Isotopic and hydrologic responses of small, closed lakes to climate variability: Comparison of measured and modeled lake level and sediment core oxygen isotope records
نویسندگان
چکیده
Simulations conducted using a coupled lake-catchment isotope mass balance model forced with continuous precipitation, temperature, and relative humidity data successfully reproduce (within uncertainty limits) long-term (i.e., multidecadal) trends in reconstructed lake surface elevations and sediment core oxygen isotope (dO) values at Castor Lake and Scanlon Lake, north-central Washington. Error inherent in sediment core dating methods and uncertainty in climate data contribute to differences in model reconstructed and measured short-term (i.e., sub-decadal) sediment (i.e., endogenic and/or biogenic carbonate) dO values, suggesting that model isotopic performance over sub-decadal time periods cannot be successfully investigated without better constrained climate data and sediment core chronologies. Model reconstructions of past lake surface elevations are consistent with estimates obtained from aerial photography. Simulation results suggest that precipitation is the strongest control on lake isotopic and hydrologic dynamics, with secondary influence by temperature and relative humidity. This model validation exercise demonstrates that lake-catchment oxygen isotope mass balance models forced with instrumental climate data can reproduce lake hydrologic and isotopic variability over multidecadal (or longer) timescales, and therefore, that such models could potentially be used for quantitative investigations of paleo-lake responses to hydroclimatic change. 2012 Elsevier Ltd. All rights reserved.
منابع مشابه
Isotopic and hydrologic responses of small, closed lakes to climate variability: Hydroclimate reconstructions from lake sediment oxygen isotope records and mass balance models
Hydroclimate sensitivity simulations were conducted with a lake-catchment hydrologic and isotope mass balance model adapted to two small, closed lakes (Castor and Scanlon) located in the Pacific Northwest. Model simulations were designed to investigate the combined influences of persistent disequilibrium, reddening, and equifinality on lake water and sediment (i.e., biogenic and endogenic carbo...
متن کاملThe isotopic and hydrologic response of small, closed-basin lakes to climate forcing from predictive models: Application to paleoclimate studies in the upper Columbia River basin
Simulations conducted using a coupled lake-catchment, hydrologic and isotope mass-balance model indicate that small, closed-basin lakes in north-central Washington are isotopically sensitive to changes in precipitation, relative humidity, and temperature. Most notably, model simulations predicted inconsistent lake responses to precipitation changes due to differences in lake outseepage rates an...
متن کاملThe isotopic and hydrologic response of small, closed-basin lakes to climate forcing from predictive models: Simulations of stochastic and mean-state precipitation variations
A hydrologic and isotope mass-balance model is applied to two small, closed-basin lakes, Castor and Scanlon, in north-central Washington to describe the influence of hydroclimatic forcing on lake hydrologic and isotopic evolution. Simulations of lake responses to the combined effects of stochastic variability (i.e., random interannual fluctuations) and long-term (i.e., multidecade to century), ...
متن کاملMulti-proxy Records of Holocene Climate and Vegetation Change from Ethiopian Crater Lakes
The sediments of Ethiopian crater lakes have differentially sensitive palaeoclimate indicators that vary with time. Lake Tilo, in the south-central Rift Valley, shows a 10,000-year diatom and oxygen-isotope sequence that may be interpreted in terms of hydrochemical and hydrological responses to century-scale climate changes. The diatom record of lake salinity became sensitive to climate variabi...
متن کاملStable isotopes of oxygen and hydrogen in the Truckee River-Pyramid Lake surface-water system, 2. A predictive model of Î ́18O and Î ́2H in Pyramid Lake
A physically based model of variations in WO and 6*H in Pyramid Lake is presented. For inputs, the model uses measurements of liquid water inflows and outflows and their associated isotopic compositions and a set of meteorological data (radiative fluxes, air temperature, relative humidity, and windspced). The model simulates change of lake volume, thermal and isotopic stratification, evaporatio...
متن کامل